Abstract

Histone deacetylases (HDACs) inhibitors have demonstrated a great clinical achievement in hematological malignancies. However, the efficacy of HDACs inhibitors in treating solid tumors remains limited due to the complicated tumor microenvironment. In this study, we designed and synthesized a class of novel HDACs inhibitors based on the structure of flavones and isoflavones, followed by biological evaluation. To be specific, a lead compound 15a was discovered with strong anti-proliferative effects on a variety of solid tumor cells, especially for breast cancer cells with resistance to SAHA. Studies demonstrated that 15a could significantly inhibit the activity of HDAC 1, 2, 3 (class I) and 6 (class IIB), leading to a dose-dependent accumulation of acetylated histones and α-Tubulin, cell cycle arrest (G1/S phase) and apoptosis in breast cancer cells. Furthermore, the lead compound 15a could also antagonize the activation of STAT3 induced by HDACs inhibition in some breast cancer cells, which further reduced the level of pro-survive proteins in tumor cells and enhanced anti-tumor activity regulated by STAT3 signaling invivo. Overall, our findings demonstrated that the novel compound 15a might be a HDACs inhibitor candidate, which could be used as promising chemotherapeutic agent for breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call