Abstract
AbstractThis review firstly summarizes our recent work on the preparation and photophysical properties of cationic or neutral lanthanide(III) monoporphyrinate complexes, as well as some bridging dinuclear complexes, in which the porphyrinate anion can sensitize the NIR emission of NdIII, YbIII and ErIII ions by serving as an antenna that absorbs visible light and transfers the energy to the excited state of the lanthanide(III) ion, followed by relaxation through the NIR emission. Next, several d–f heterobimetallic diporphyrin complexes, in which a transition metal (M = Zn, Pd, and Pt) porphyrinate moiety serves as a donor by transferring its energy to the Yb3+ ion and enhances the NIR emission, are described. In addition, the synthesis and photophysical properties of some GdIII porphyrinate complexes and monophthalocyaninato lanthanide complexes are also described in this contribution. Apart from the above compounds, we also discuss the construction of multidecker multimetallic lanthanide Schiff base assemblies, which demonstrate that these varieties of salen‐type Schiff base ligands can stabilize LnIII centers and provide the antenna for lanthanide luminescence. By taking advantage of the absorption and emission properties of transition‐metal Schiff base complexes, multinuclear and polynuclear ZnII–LnIII Schiff base complexes have also been constructed with improved luminescence properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.