Abstract

An extremely concise, scalable, and stereoselective synthesis of a privileged chiral skeleton based on 2,2'-biindolyl and commercially available chiral building blocks has been developed. This novel skeleton allows for easy access to a range of bisphosphine ligands (decagram scale, up to 58% total yield, only three steps). The synthetic method is characterized by an efficient central-to-axial chirality transfer strategy. In particular, the superior performance of the ligands has been demonstrated in diverse reactions, including several asymmetric hydrogenations, asymmetric conjugate reductions, and cycloisomerization reactions, indicating a great potential for the application of the newly developed chiral backbones in further modifications and exploration of novel chiral ligands and catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.