Abstract

Coumarins possess a broad spectrum of biological activities and are important pharmacophores in drug developments. Since aberrant upregulation of PI3K/Akt signaling is related to uncontrolled tumor cell proliferation, enhanced migration, and adhesion-independent tumor growth, it is of interests to find novel coumarin derivatives as anticancer agents targeting the PI3K/Akt signaling pathway. A variety of coumarin derivatives possessing the pyridinylurea units were designed to increase their potency and isoform selectivity against PI3Ks. Novel coumarin analogs 4a-m were were prepared from 5-methylpyridin-2-ylamine in a straightforward way and their growth inhibitory activity against tumor cells was evaluated by a MTT assay. The inhibitory activity against PI3Kα, β, δ and γ was measured by luminescent assay. Akt phosphorylation inhibition and caspase 3 and PARP activation were measured by Western blot analysis. Apoptosis was measured by staining cells with annexin V-FITC and 7-AAD. In general, these coumarin analogs exhibited good in vitro growth inhibitory activities against tumor K562, Hela, A549 and MCF-7 cells. Some of them showed comparable or better potency than BENC-511. Compounds 4b and 4h were much more potent PI3K inhibitors than S14161 or BENC-511. In addition, 4b was more selective to PI3Kα/β over PI3Kδ/γ, while 4h was a selective PI3Kα/β/δ inhibitor. Moreover, 4h could suppress the phosphorylation of Akt and induce K562 cell apoptosis. Coumarin derivatives possessing the pyridinylurea units are potential PI3K inhibitors and anticancer agents. These findings will be helpful for the future design of more potent and selective PI3K inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call