Abstract

Applications of photochemistry are becoming very popular in modern-day life due to its operational simplicity, environmentally friendly and economically sustainable nature in comparison to thermochemistry. In particular photoinduced radical polymerisation (PRP) reactions are finding more biological applications and especially in the areas of dental restoration processes, tissue engineering and artificial bone generation. A type-II photoinitiator and co-initiator-promoted PRP turned out to be a cost-effective protocol, and herein we report the design and synthesis of a new efficient co-initiator for a PRP reaction via a barrierless sequential conjugate addition reaction. Experimental mechanistic observations have been further complemented by computational data. Time for newly synthesised 1,2-benzenedithiol (DTH) based co-initiator promoted polymerisation of urethane dimethacrylate (UDMA, 70 %) and triethylene glycol dimethacrylate (TEGDMA, 30 %) in presence of 450 nm LED (15 W) under the aerobic conditions is 38 seconds. Polymeric material has high glass transition temperature, improved mechanical strength (860 BHN) and longer in-depth polymerisation (3 cm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.