Abstract

Because of damage to the environment and the energy crisis, the storage and use of sustainable energy, such as solar and wind, has become urgent. Much attention has been given to the use of electrochemical energy storage (EES) devices in storing this energy. Electrode materials are critical to the performance of these devices, and carbon-based nanomaterials have become extremely promising components because of their unique and outstanding advantages. The structure design and controllable synthesis of electrode materials determine the electrochemical performance of EES to a large extent. In this review, strategies for carbon-based materials of different dimensionalities are summarized and their uses in different EES devices are given, providing an in-depth understanding of the relationship between material structure and electrochemical performance. Prospects for the design and synthesis of carbon-based nanomaterials with exceptional performance for EES devices are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call