Abstract
Fluorogenic bioorthogonal reactions enable visualization of biomolecules under native conditions with excellent signal-to-noise ratio. Here, we present the design and synthesis of conformationally-strained aziridine-fused trans-cyclooctene (aza-TCO) dienophiles, which lead to the formation of fluorescent products in tetrazine ligations without the need for attachment of an extra fluorophore moiety. The presented aza-TCOs adopt the highly strained "half-chair" conformation, which was predicted computationally and confirmed by NMR measurements and X-ray crystallography. Kinetic studies revealed that the aza-TCOs belong to the most reactive dienophiles known to date. The potential of the newly developed aza-TCO probes for bioimaging applications is demonstrated by protein labeling experiments, imaging of cellular glycoconjugates and peptidoglycan imaging of live bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.