Abstract

A multiple charge-transfer second-order nonlinear optical (NLO) chromophore 2,3-bis(4-aminophenyl)-5,6-dicyanopyrazine (BAPDCP) was successfully designed and synthesized. It was characterized by 1H NMR, mass spectrometry, Fourier transform infrared spectroscopy, and elemental analysis. The first hyperpolarizability β of BAPDCP was measured with the Hyper–Rayleigh scattering technique, which was 123.5 × 10−30 esu. The donor-embedded prepolyimide and prepolyurea were also synthesized by a polyaddition reaction. Thermogravimetric analysis and differential scanning calorimetry demonstrated that either the chromophore or the polymers have fine thermal stability. The thin films of prepolymers were prepared by coating on ITO glass substrate and poled by corona poling at elevating temperature. The second-order NLO coefficients d33 of the films were measured by in situ second-harmonic generation measurements. The d33 were deduced as 27.7 and 16.5 pm/V for polyurea and polyimide at 1064 nm fundamental wavelength, respectively. The onset depoling temperature of the polyimide and polyurea were both as high as 200 °C. To understand the temperature effect to the orientation thermal stability of polyimide, two films were treated at different final poling temperatures. The depoling experimental results showed that the orientation stability is higher, as raising the final treated temperature but the d33 value are almost similar. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2846–2853, 2003

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.