Abstract

In this study, a series of 48 hybrids of the functionalised 1-[(1H-1,2,3-triazole-4-yl)methyl]quinazoline-2,4-dione 17–22 were synthesised and evaluated for potential antiviral activity. The new hybrids were designed to contain a diethoxyphosphoryl group connected to the triazole moiety via ethylene or propylene linker, and in which the benzyl or benzoyl function is substituted at N3 in the quinazoline-2,4-dione moiety. The Cu(I)-catalyzed Hüisgen dipolar cycloaddition of azidophosphonates 23 and 24 with the respective N1-propargylquinazoline-2,4-diones 26aa–26ag, 26ba–26bg, 27aa–27ad and 27ba–27bd was applied for the syntheses of the designed compounds. All final hybrids 17–22 and N3-functionalised N1-propargylquinazoline-2,4-diones 26 and 27 were subsequently evaluated for their antiviral activity toward a broad range of DNA and RNA viruses. Importantly, hybrids 19be–19bg and 20be–20bg showed profound antiviral activities against Respiratory Syncytial Virus (RSV) with EC50 values in the lower micromolar range, with activity against viral strains of both subtypes (RSV A and B). In addition, several compounds also exerted some weak antiviral activity against varicella zoster virus. Finally, 19 ag was the only compound that showed antiviral potency against human cytomegalovirus, although with rather weak inhibitory activity. Notably, none of the tested compounds was cytotoxic toward uninfected cell lines used for the antiviral assays at a concentration up to 100 μM, returning interesting therapeutic indices for respiratory syncytial virus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call