Abstract
We systematically examined the mechanism of the solvent polarity dependence of the fluorescence ON/OFF threshold of the BODIPY (boron dipyrromethene) fluorophore and the role of photoinduced electron transfer (PeT). In a series of BODIPY derivatives with variously substituted benzene moieties at the 8-position, the oxidation potential of the benzene moiety became more positive and the reduction potential of the BODIPY fluorophore became more negative as the solvent polarity was decreased; consequently, the free energy change of PeT from the benzene moiety becomes larger in a more nonpolar environment. Utilizing this finding, we designed and synthesized a library of probes in which the threshold of fluorescence ON/OFF switching corresponds to different levels of solvent polarity. These environment-sensitive probes were used to examine bovine serum albumin (BSA) and living cells. The polarity at the surface of albumin was concluded to be similar to that of acetone, while the polarity of the internal membranes of HeLa cells was similar to that of dichloromethane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.