Abstract
Here we describe the design and synthesis of a DNA-encoded library of bicyclic peptoids. We show that our solid-phase strategy is facile and DNA-compatible, yielding a structurally diverse combinatorial library of bicyclic peptoids of various ring sizes. We also demonstrate that affinity-based screening of a DNA-encoded library of bicyclic peptoids enables to efficiently identify high-affinity ligands for a target protein. Given their highly constraint structures, as well as increased cell permeability and proteolytic stability relative to native peptides, bicyclic peptoids could be an excellent source of protein capture agents. As such, our DNA-encoded library of bicyclic peptoids will serve as versatile tools that facilitate the generation of potent ligands against many challenging targets, such as intracellular protein–protein interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.