Abstract

N-Methyl-D-aspartate receptors (NMDARs) are key regulators of synaptic plasticity in the central nervous system. Potentiation of NMDARs containing GluN2A subunit has been recently recognized as a promising therapeutic approach for neurological disorders. We identified a novel series of GluN2A positive allosteric modulator (PAM) with a pyridin-2-one scaffold. Initial lead compound 1 was discovered through in silico-based screening of virtual ligands with various monocyclic scaffolds. GluN2A PAM activity was increased by introduction of a methyl group at the 6-position of the pyridin-2-one ring and a cyano group in the side chain. Modification of the aromatic ring led to the identification of potent and brain-penetrant 6-methylpyridin-2-one 17 with a negligible binding activity for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Oral administration of 17 significantly enhanced rat hippocampal long-term potentiation (LTP). Thus, 17 would be a useful in vivo pharmacological tool to investigate complex NMDAR functions for the discovery of therapeutics toward diseases associated with NMDAR dysfunction

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.