Abstract

Large capacitance energy storage materials have a great application prospect due to the development of portable devices. An electrochemical deposition method was used to combine amorphous CuCo2S4 with NiMoS4, which was prepared by a two-step hydrothermal method. The resulting grass-like nanowire array structure greatly promotes the utilization rate of active materials. By the addition of two variable valence metal ions, there is an increase in electrolyte touchable active sites and a decrease in the impedance of the electrode materials. Compared with bare NiMoS4, the binder-free composite electrode has a significantly better capacitance characteristic. In particular, the NiMoS4@CuCo2S4−8 has excellent capacity performance with a specific capacitance of 13.14 F cm−2 at the current density of 5 mA cm−2. The electrode shows 73% capacitance retention after 2000 charge-discharge cycles. It is shown that the combined effect of the nanowires and the several variable valence metal ions is effective to increase the specific capacitance of bimetallic sulfides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call