Abstract
Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb), is a global public health concern because of the emergence of various resistant strains. Benzothiazin-4-ones (BTZs), represented by BTZ043, are a promising new class of agents for the treatment of tuberculosis and have been shown to kill Mtb in vitro, ex vivo, and in mouse models of TB. Herein we report the design and syntheses of nitroaromatic sulfonamide, reverse-amide, and ester classes of anti-TB agents using a scaffold simplification strategy based on BTZ043. The presented work explores the effect of functional groups such as sulfonamides, reverse-amides, and esters that are attached to the nitroaromatic rings on their anti-TB activity. The in vitro activity of the compounds evaluated against the H37Rv strain of Mtb show that nitroaromatic sulfonamides and nitrobenzoic acid esters with two nitro substituents were most active and highlights the importance of the electronic character (electron deficient aromatic ring) of the nitroaromatic ring as a central theme in these types of nitroaromatic anti-TB agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.