Abstract

To improve the solar energy utilization in the photovoltaic power, the sun ray double axis tracking device is designed and its tracking method is introduced. Using the finite element method, the parameterized analysis model is built and the static calculation is performed in different conditions for the device. The design feasibility of the device is verified by evaluating the stress. The lightweight of the device is made on the premise that the design satisfies the intensity and this provides the basis for manufacturing the prototype. The sun's rays tracing experiment is carried out by the prototype. Results show that the device design is reasonable and meets the design requirements; the key working conditions for the solar tracking design are found; the lightweight is obvious and the weight is reduced by 14%; the average errors of azimuth angle and height angle are within 5 deg; compared with the fixed device, the increasing proportion of solar energy one day is up to 52.6%; and the device works steadily and has good mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.