Abstract

NPTs have vast applications because of no tyre puncture, no need for air pressure, low rolling resistance, and also have higher flexibility for design and recyclability. In this research work, different structures of polyurethane (PU) spokes have been designed and analyzed under radial loading conditions which include structures like honeycomb with varying cell angles, simple spoke, and trapezoid type by keeping in view that the cell wall thickness and somehow the mass of the structures remain the same. Based on the Mooney-Rivlin hyper-elastic material model and performing 2D non-linear static structural analysis on different types of NPTs using ANSYS, it has been observed that the simple spoke structure has the lowest spoke stress and deformation values of 2.01 MPa and 11.7 mm, while HC–A1 has the least value of strain energy of 2.58 mJ, at a load of 2500 N. The above results show that the straight spoke structures like simple spoke and trapezoid type have a high load-carrying ability than the honeycomb type NPTs under same boundary conditions. While honeycomb NPTs have higher fatigue life as compared to straight-spoke NPTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.