Abstract

End-of-life tires are a challenging waste because of their non-biodegradable properties, high production volume, and low utilization rate. Extensive research is currently being undertaken to look for various applications of waste tire rubber in the concrete industry to improve their utilization rate and significantly increase the uptake of this waste material. However, low strength and poor bond performance between rubber aggregates and cement matrix are hindering its application in the concrete industry. This paper introduces an innovative method of prestressing the coarser rubber aggregates (RAs) to address these challenges and limitations found in the critical literature review. Two steel mould rigs were newly designed for manufacturing the rubberized concrete (RuC). Three different mix designs containing 100% replacement of conventional coarse aggregates were prepared using (i) two different sizes of rubber particles and (ii) the addition of steel fibers. Density, SEM-EDS analysis, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity were undertaken to evaluate mechanical performances. The experimental results depict that this novel preloading method can bring a maximum of 97%, 59%, and 20% increase in compressive strength, flexural and tensile strength compared to that of the normal RuC, respectively. In addition, it provides a significant improvement in the interfacial transition zone between the matrix and RAs. This study demonstrates the efficient scientific recycling procedures in manufacturing the RuC with a maximum compressive strength of 18 MPa (density of 2000 kg/m3), which can be considered structural lightweight concrete as per ACI 213R-14 and Eurocode 2 recommendations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call