Abstract

In the near future a super-critical hydrogen cold source will be installed in the HB4 beam tube of the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory. The cold source will illuminate four neutron guides. Here we discuss the design and simulation of the guide CG1, dedicated to a new triple axis spectrometer. The conceptual design for the HFIR guides, including CG1, was aided by numerical calculations of neutron trajectories and acceptance diagrams. The CG1 guide consists of a partially trumpeting two-channel bender and a straight guide section. The design was subsequently modeled in detail from source to specimen, utilizing the McStas program. The lessons learned from the McStas simulations resulted in some minor but important changes in the design, and these were also verified using the original method of calculation. The resulting combination of guide and vertically focusing monochromator should deliver a beam with excellent spatial and angular distributions in and out of the scattering plane. The available intensity will enable the construction of a powerful spectrometer for incident energies as large as 20–25 meV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call