Abstract
This paper presents design and Simulink implementation of zero voltage switching (ZVS) phase-shifted full bridge dc-dc converter. The phase-shifted full bridge PWM dc-dc converter is widely used in high power, high voltage applications due to the advantages of high power handling capability with low switching and conduction losses. The phase shift feature of the control signal allows ZVS thereby eliminating the switching losses during FET device transition. It also minimize the parasitic effect and conduction losses at high frequency operation thereby increase system efficiency. A 3kW, 100 kHz high frequency phase-shifted full bridge converter was design and simulated in Matlab/Simulink to analyze the system performance prior to experimental implantation. The converter is intended for hybrid energy systems (HES) application in which a state space controller will be developed with wider dynamics to accommodate variable input sources mostly from renewable energy resources like solar and wind power. The converter simulation results shows that the system achieved greater than 90% efficiency at full load current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.