Abstract
The millimeter wave (mm-wave) is expected to play a crucial role in providing broad frequency bandwidth for large data transmission. The restrictions of wave propagation are anticipated to get eliminated in mm-wave propagation through the assistance of antenna technologies. The higher frequency spectrum prevalence of the 5G applications are likely to be dependent on a small advanced antenna technology. This paper presents an antenna design which uses Mylar as substrate for the 5G wireless applications. The structure of the antenna adopted here is of a T-shaped patch designed with ideal symmetrical slot structures. To increase the bandwidth the idea of defective ground structure (DGS) is used. The antenna model discussed here shows a high impedance bandwidth and a fair radiation pattern in the required direction with a maximum gain of 8.35dB at 28 GHz frequency. The proposed antenna is compared with the basic microstrip patch antenna which is designed at low frequency to prove that the bandwidth is enhanced and so other parameters in the proposed antenna such that it is suitable for mm-wave 5G wireless applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.