Abstract

Microfluidic designs are advantageous and are extensively used in number of fields related to biomed ical and biochemical engineeri ng. The objective of this paper is to perform numerical simulations to optimize the design of microfluidic mixers in order to achieve optimum mixing. In the present study, fluid mixing in different type of micro channels has b een investigated. Numeric al si mulations are performed in order to understand the effect of channel geometry parameters on mixing p erformance. A two dimensional “ T shaped ” passive microfluidic mixer is restructured by employing the rectangular shaped obstacles in the chan nel to improve the mixing performance. The impact of proper placement of obstacles in the channel is demonstrated b y applying the leakage concept. It has been observed that, the channel design with non - leaky obstacles (i.e. without leaky barriers) has presented better mi xing performance in contrast to channel design with leaky obstacles (i.e. leaky barriers) and channe l design without obstacles. The mixing occurs by virtue of secondary flow and generation of vortices due to curling o f fluids in the channel o n account of t he presence of obstacles. This passive mixer has achieved complete mixing of fluids in few seconds o r some milliseconds , which is certainly acceptable to utilize in biological applications such as cell dynamics, drug scre ening , toxicological screening and others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call