Abstract

A high-breakdown-voltage GaN-based vertical field-effect transistor with negative fixed interfacial charge engineering (GaN ICE-VHFET) is proposed in this work. The negative charge inverts an n-GaN buffer layer along the oxide/GaN interface, inducing a vertical hole layer. Thus, the entire buffer layer consists of a p+-hole inversion layer and an n-pillar buffer layer, and the p-pillar laterally depletes the n-GaN buffer layer, and the electric field distribution becomes more uniform. Simulation results show that the breakdown voltage of the GaN ICE-VHFET increases by 193% and the on-resistance of such a device is still very low when compared with those of conventional vertical FETs. Its figure of merit even exceeds the GaN one-dimensional limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.