Abstract
Metal oxide gas sensors usually require a few tens of milliwatts of power consumption to operate at high temperature, which limits their application in mobile and portable devices. Here, we proposed a cantilever structure to build an ultra-low power gas sensor for hydrogen sulfide gas detection. By employing a nano-film size effect to reduce the thermal conductivity of the material, and self-heated corrugation configuration, the power consumption of the gas sensor is significantly reduced. Through numerical analysis and finite element simulation, two different gas sensors were designed and the power consumption and stress distribution were analyzed and optimized. Under the operating temperature of 200 °C, only 0.27 mW power is consumed, the stress value is less than 250 MPa and the displacement is a few hundred of nanometers. The results serve as a guide and reference for ultra-low power MEMS device designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.