Abstract

The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-state platforms. In this paper, an acceleration sensing scheme based on NV spin–strain coupling is proposed, which can effectively eliminate the influence of the stray noise field introduced by traditional mechanical schemes. Through the finite element simulation, it is found that the measurement bandwidth of this ensemble NV spin system ranges from 3 kHz to hundreds of kHz with structure optimization. The required power is at the sub-μW level, corresponding to a noise-limited sensitivity of 6.7×10−5g/Hz . Compared with other types of accelerometers, this micro-sized diamond sensor proposed here has low power consumption, exquisite sensitivity, and integration potential. This research opens a fresh perspective to realize an accelerometer with appealing comprehensive performance applied in biomechanics and inertial measurement fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.