Abstract
The project of a Multi-TeV Muon Collider represents a unique opportunity to explore the high energy physics frontier and to measure with high precision the Higgs coupling with the other particles of the Standard Model as well as the trilinear and quadrilinear Higgs self-coupling, leading to a precise determination of the Higgs potential, in order to confirm the theoretical predictions of the SM and possibly to find evidences for new physics. One of the major challenges for the design and optimization of the technologies suitable for a Muon Collider experiment is represented by the high background induced by the decay of the muons coming from the beam. This contribution present the design of an innovative MPGD-based hadronic calorimeter (HCAL). The detector consists of a sampling calorimeter exploiting the Micro Pattern Gas Detectors (MPGDs) as active layers: MPGDs offer a fast and robust technology for high radiation environments and a high granularity for precise spatial measurements. Moreover, the detector is designed to optimize the jet reconstruction and for background suppression. The calorimeter is simulated using the Geant4 toolkit to support the detector R&D. The detector design and layout optimization supported by the simulation is described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.