Abstract

On-orbit service for spacecraft relies heavily on on-orbit docking with the orbital replacement unit docking interface. Foreign research on the docking interface of the orbit replaceable unit has been in-depth, while the domestic work is still limited. Currently, most design on the docking interface relies on the axial feed of the manipulator, which may result in insufficient docking interface mating force under specific conditions. In view of the above problems, it requires a linear plug-in locking interface for the docking of the orbital replaceable unit, and the design scheme of the tapered rod guide and linkage locking parts needs to be determined. Optimization of the linkage locking mechanism is completed by a finite element simulation. The effect of clearance of the taper rod, effective locking points and friction coefficient have been analyzed by means of dynamics modelling during the docking and locking processes. The research also verified the design rationality for the orbital replaceable unit linkage. A processing path and verification for the prototype have been made as well. This work introduces the idea of self-plugging during the orbital docking process. It lays a foundation for the prototype development and control strategy of the orbital replaceable unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.