Abstract
ZnS particles are synthesized by adding ethylenediamine (en) and its derivatives, triethylenetetramine (trien) and ethylenediaminetetraacetate (EDTA), as capping agents. In the capped ZnS particles, Zn and S defects due to O, N-doping and loading of carbon dots (CDs) are confirmed. The degree of defects is suggested from photoluminescence (PL) spectra and density of states calculations. The intensities of PL are lowered in the order of ZnS-none> ZnS-EDTA> ZnS-en> ZnS-trien, while the photocurrent densities are increased in the opposite order. Time resolved PL shows extremely slow recombination of photo-excited charges in ZnS-trien. ZnS-trien is the most suitable for catalyzing CO2 reduction, and ZnS-en is the best for water-splitting. The excellent photocatalytic activity of ZnS-trien encapsulated with N-CDs shell maintains without photo-corrosion over more than five recycling experiments. Eventually, this study reveals that well-ordered ZnS with C, N, O co-doping-induced Zn, S co-defects is self-assembled using en-derivatives as capping agents, exhibits good photocatalytic activity without grafting with other particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.