Abstract

Parachutes are used as a decelerator in the re-entry, descent, and landing of space recovery payloads, providingstability and desired descent rate for a safe landing. The selection of the main parachute is the most critical andimportant part of the space module recovery system. Parachute size is restricted by the required landing speed,materials, and weight of the payload. Parachute materials are selected based on the various forces experienced bythe parachute. An investigation has been carried out to design a parachute system which gives less impact velocity, less angle of oscillation and less impact load for the landing of a crew module. Therefore, in this paper, selection criteria for the main parachute have been discussed considering recovery of re-entry space payload of 500 kg (unmanned) and 3500 kg (manned) class. Based on analysis carried out on the parachute size, canopy filling time, velocity reduction, peak deceleration, and opening shock, authors have proposed a unique type of solid canopy with slots (slots of the minimum area equivalent to geometry porosity) for the main parachute rather than a complex ringsail or disk-band type canopy. With this new concept, the parachute has been designed, developed and qualified through testing, trials and maiden flight of space capsule in LEO and is propose to use in the next manned space mission program.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.