Abstract
Abstract Various electric machines can be the candidate for electric vehicles applications, including induction machines, permanent magnet synchronous machines, switched reluctance machines, etc. Another class of machine, which has been relatively ignored, is synchronous reluctance machines. In order to enhance and increase torque density of pure synchronous reluctance machines, the low cost permanent magnet can be inserted into rotor lamination to contribute torque production, which is so-called permanent magnet-assisted synchronous reluctance machines. This paper presents the design and rotor geometry analysis of low cost ferrite permanent magnet-assisted synchronous reluctance machines with transversally-laminated rotor. The advanced finite element method will be employed to calculate d-axis and q-axis inductance variation with rotor geometric parameters. The electromagnetic performance of optimized permanent magnet-assisted synchronous reluctance machines will be evaluated as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.