Abstract
The article deals with a real-time implementation of a decentralized sliding mode controller applied to a twin rotor multi-input multi-output system, a system with 2 degrees of freedom, strongly coupled and its dynamic resembles that of a helicopter. The work is motivated by the fact that in the literature several control techniques have been proposed for the twin rotor multi-input multi-output system control without being applied to the system, and the considered authors presented just the simulation results. To control the vertical and horizontal positions of the twin rotor multi-input multi-output system, the system is decoupled into two subsystems, vertical and horizontal, controlled by two independent sliding mode regulators calculated from the mathematical models of vertical and horizontal subsystems, respectively. From the results of real-time control of the twin rotor multi-input multi-output system in stabilization and tracking modes, and performing robustness and disturbance rejection tests, the effectiveness of the suggested control scheme was proven.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.