Abstract

Aiming at high performance requirements of snake-like robots under complex environment, we present a control system of our proposed design which utilizes a STM32 as the core processor and incorporates real-time image acquisition, multisensor fusion, and wireless communication technology. We use Solidworks to optimize the design of head, body, and tail joint structure of the snake-like robot. The system is a real-time system with a simple-circuit structure and multidegrees of freedom are attributed to the flawless design of control system and mechanical structure. We propose a control method based on our simplified CPG model. Meanwhile, we improve Serpenoid control function and then investigate how different parameters affect the motion gait in terms of ADAMS emulation. Finally, experimental results show that the snake-like robot can tackle challenging problems including multi-information acquisition and processing, multigait stability, and autonomous motion and further verify the reliability and accuracy of the system in our combinatory experiments.

Highlights

  • With the rapid development of science and technology, bionic robots, especially snake-like robots, have been widely used in military, civil and space, and other fields [1,2,3,4,5]

  • Leading Research Groups include the group led by Professor Hirsoe in Tokyo Institute of Technology (ACM R8), the robot team in Carnegie Mellon University (Uncle Sam), and the robot team in Michigan University (OmniTread)

  • ACM R7 may bend its body figure into a circle and rolls forward in a grass land like a wheel [11]; Uncle Sam is categorized into a reconfigurable genre of robots, which is extremely suitable in applications in ducts, slits, etc. [12]; OmniTread is skilled at climbing upward and able to crawl across pipeline with a diameter of 11 cm to 24cm

Read more

Summary

Introduction

With the rapid development of science and technology, bionic robots, especially snake-like robots, have been widely used in military, civil and space, and other fields [1,2,3,4,5]. Robots can demonstrate advantages in camouflage and multiple degrees of freedom, with which dangerous works can be completed in a total and/or partial replace of people’s roles, such as investigation, search and rescue, patrol, pipeline inspection, and space exploration. Leading Research Groups include the group led by Professor Hirsoe in Tokyo Institute of Technology (ACM R8), the robot team in Carnegie Mellon University (Uncle Sam), and the robot team in Michigan University (OmniTread). The prototype of the snake-like robot is designed in a routine of mechanical design, motion control, signal acquisition, data transmission, simulation research, and prototype test, which owes small volume, light weight, and multiple degrees of freedom. The emulation experiment and prototype test adequately proved that the stability of the snake-like robot is expected

Overall Scheme Design
Mechanical Structure Design
Control System Design
Motion Control Design
Performance Testing and Analysis
B Lateral drift
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call