Abstract

Climbing robots are widely used to inspect smooth walls, such as glass curtain walls and ceramic tile surfaces. However, a good adsorption method for inspecting a cliff face and dusty high-altitude buildings with small-amplitude vibration has not been found. In this study, a new adsorption method using grasping claw grippers to adhere to rough walls is proposed and applied. A mechanical model for the interaction between the gripper and the uplifts on rough walls is also established to analyze the critical state of force balance of the gripper. In addition, MATLAB is used in a simulation, and an experimental prototype is designed to test the grasp stability of the gripper. Simulation and experiment results indicate that the gripper can adequately achieve grasping adsorption on a rough concrete wall. The findings provide a foundation for constructing a system for a rough-wall-climbing robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.