Abstract

Due to their almost zero relative hydrogen atom adsorption-free energy, MoS2-based materials have received substantial study. However, their poor electronic conductivity and limited number of catalytic active sites hinder their widespread use in hydrogen evolution reactions. On the other hand, metal clusters offer numerous active sites. In this study, by loading Ni metal clusters on MoS2 and combining them with the better electrical conductivity of graphene, the overpotential of the hydrogen evolution reaction was reduced from 165 mV to 92 mV at 10 mA·cm-2. This demonstrates that a successful method for effectively designing water decomposition is the use of synergistic interactions resulting from interfacial electron transfer between MoS2 and Ni metal clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call