Abstract

As a special robot in extreme environment, wall-climbing robot can be used in bridge detection, signal collection, disaster search and rescue, and mine inspection. However, existing wall-climbing robots can only climb on one or several kinds of wall surfaces carrying a lighter load. Inspired by the structure characteristics of flies and clingfish, a wall-climbing robot with microspines and suction cup is proposed. Microspines are beneficial to the contact between the hook tip and the wall surface. Suction cup including flexible skirt edge and high-speed eddy fans, can avoid the robot overturning due to failing in the gripping. In addition, the relationships of adsorption force and pressure versus the distance between suction cup and wall surface are measured. Furthermore, the kinematic of robot is analyzed and the force of wall to the robot and motor torque are evaluated respectively. Finally, the prototype of the wall-climbing robot is manufactured and tested on a variety of rough wall surfaces, and the experimental results show that the robot climbs stably with a larger load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call