Abstract

In recent years, electron-induced reactive processing (EIReP) has emerged as a state-of-the-art technology to modify and develop several kinds of polymeric materials. EIReP uses the spatial and temporal tuneable energy input by high energy electrons during melt mixing process in order to precisely control the desired chemical reactions and processability. Motivated by the successful development of high performance polyolefin based compounds by EIReP, we report herein for the first time the successful preparation of high-performance polyamide 6/fluoroelastomer (50/50, w/w) blends. Relationships between EIReP process parameters (non-reactive mixing time, dose per revolution, electron energy), morphology and properties of blends were established. The blends were prepared using a range of absorbed dose (12.5, 17.5 and 25kGy) while keeping constant values of electron energy (1.5MeV), dose per revolution (17.2kGy/rpm), temperature (230°C) and rotor speed (60rpm). The EIReP-modified blends exhibited excellent mechanical properties and outstanding oil swelling resistance along with good thermal stability. For example, volume swell of the blends was only 5–8% in IRM oil at 150°C for 72h, which was found to be the lowest amongst this type of rubber-plastic blends reported. The improved properties of these blends were explained with the help of interfacial tension between the phase components and electron-induced long-chain branching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call