Abstract

High-energy continuous wave (CW) laser ablation can cause severe damage to structural materials in an extremely short time, which generates considerable concern in terms of material safety. For the purpose of reducing or even eliminating such laser-induced damage, a novel composite coating consisting of a boron-modified phenolic formaldehyde resin incorporating ZrC and SiC has been designed and prepared. The experimental results reveal that ZrC and SiC are rapidly oxidized to ZrO2 and SiO2 respectively, leading to the formation of a white ceramic layer consisting of ZrO2 particles and melted SiO2. After ablation at 1000 W/cm2 for 50 s, elemental analysis indicates that no Si can be found in the central ablation zone because of gasification. A relatively compact ZrO2 layer is formed through the sintering of adjacent ZrO2 particles, which effectively improves the reflectivity of the coating from 7.3% (before ablation) to 63.5% (after ablation). The high reflectivity greatly reduces the absorption of laser energy. In addition, no obvious ablation defects are observed in the composite coating. The excellent anti-laser ablation performance of the coating makes it a promising system for protecting a material against the effects of long-term CW laser ablation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.