Abstract

Ce element was introduced to modify Al-2%Fe (mass fraction) binary alloy. The microstructures, crystallization behavior, electrical/thermal conductivities and mechanical properties of these alloys were systematically investigated. The results indicated that the appropriate Ce addition decreased the recalescence temperature and growth temperature of Al-Fe eutectic structure, improved the morphology and distribution of Fe-containing phase, and simultaneously increased the conductivity and mechanical properties. The annealed treatment improved the thermal conductivity of these alloys due to the decreasing concentration of point defects. Rolling process further broke up the coarser Fe-containing phases into finer particles and made the secondary phases uniformly distributed in the α(Al) matrix. After subsequent annealing treatment and rolling deformation, the thermal conductivity, ultimate tensile strength and hardness of the Al-2%Fe-0.3%Ce (mass fraction) alloy reached 226 W/(m·K), (182±1.4) MPa and HBW (49.5±1.7), respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call