Abstract

Thermophotovoltaics (TPV) is technology similar to conventional solar photovoltaics, which have been in existence for over 50 years. The main difference between traditional solar photovoltaics and TPV is that, instead of the sun, an “emitter” is used to produce light, which is then converted into electricity by the TPV system. This emitter is heated via combustion or some other method until photons are ejected. Although the light utilized in the TPV system is not as energetic as that from the sun, the fact that the TPV cells can be placed in close proximity to the source (compared with the distance to the sun) increases the intensity of the light received by the cells. This results in a higher power production density than is possible with traditional solar photovoltaic systems. One estimate of maximum achievable output power density for TPV systems is 5W/cm2, approximately 500 times that of a traditional solar PV system. Researchers in this field have already demonstrated power densities of 1.5W/cm2. Other attractions of TPV systems include fuel versatility, compact size, silent sun-independent operation, and low maintenance costs. A TPV test station has been assembled at the Alberta Research Council in Canada. A general overview of the background technology and system components will be presented, as well as preliminary experimental results. Areas that require additional improvement in order to increase system efficiency will also be addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.