Abstract

We present an actuator designed for untethered, lower-extremity powered-prostheses that replicates biological kinetic and kinematic function of both human knees and ankles. An electric energy optimal hardware specification is defined by kinematically clamping walking gait data to the dynamic model of a series elastic actuator (SEA) and searching for motor, reduction ratio, and spring. The actuator is shown to achieve the required torque, angle, and velocity requirements for nominal walking conditions on level ground as well as varied terrain. The performance of the actuator is demonstrated on benchtop and as worn by a human subject with unilateral below knee amputation. The resulting design is a moment-coupled cantilever-beam reaction-force SEA (MC-RFSEA) that has a nominal torque rating of 85Nm, repeated peak torque of 175Nm, 105 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</sup> range of motion, and a hardware mass of 1.6kg. Preliminary results from level-ground walking with the actuator tested in an ankle configuration show an electric cost of transport of 0.053J/kg when walking at 1.5m/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.