Abstract
The matrix reactivity of sandstone formations with mixtures of hydrofluoric (HF) and hydrochloric (HC1) acids has been studied experimentally using natural cores. A systematic approach, which includes laboratory analysis and computer modelling, has been used to design and plan acid treatment for sandstone formations. Matrix reactivity to acid mixtures (reaction rate) and the relationship between the porosity and permeability are established by subjecting the Pacoota Sandstone core samples to different acid concentrations and injection rates at different temperatures. Based on material balance and reaction kinetics a numerical simulator has been developed and verified in the laboratory. This simulator can adequately predict spent-acid concentration and changes in porosity and permeability as a function of acid penetration depth for given acid treatment conditions (acid concentrations, injection rates and treatment temperatures).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.