Abstract

AbstractAromatase is a crucial enzyme for the catalysis of aromatization reaction at the last and rate‐limiting step involved in the conversion of androgenic substrates to an estrogenic substrate. A hormone‐dependent breast cancer in postmenopausal woman can be cured by inhibition of estrogen biosynthesis by the help of aromatase inhibitors (AIs). The mode of interactions of flavonones with the active site of aromatase has been studied in search of potent and selective AIs as a substitute of the natural steroidal ligand. Structure‐based computational approach namely, molecular docking simulations were performed to investigate the structural features of the docked complex of aromatase and flavonoid ligands. A nonsteroidal flavonoid pharmacophore showing electrostatic and steric features for selective binding within the main pocket of the catalytic active site of aromatase has been identified as an outcome of the study. The binding affinity of quercetin and isoflavone were predicted within aromatase. Isoflavone was used as a negative control to compare its binding affinities with the selected dataset. The predicted binding affinity of negative control isoflavone was in accordance with its in vitro AI efficacy. Isoflavone showed poor binding affinity and ranked last in terms of MolDock score (−86.309 kcal/molÅ) compared to dataset molecules. The generated pharmacophoric information will be helpful for the synthetic chemist to design and synthesize selective AIs with comparable binding affinity to the natural steroidal ligand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.