Abstract
A new method is presented for the design and operation of wind and wave-energy-powered modular seawater reverse osmosis (SWRO) desalination plants. The SWRO modules are designed to achieve discrete adaptation of their power consumption to the estimated power output of the renewable energy technologies. The mean, mode and median power output values are proposed as statistical parameters to select the size of the single-stage SWRO modules. The aim is to select the system configurations which provide the minimum specific product water cost, the highest annual freshwater production, and the most efficient exploitation of the energy resource. A statistical inference analysis determined the existence of significant differences between their results. A discussion is conducted on the optimal systems obtained with both renewable technologies, and an economic sensitivity analysis of the variables employed is performed. The method is applied to a case study in Gran Canaria island (Spain), using local climate data measurements to assess the energy resource. Results show that the median was the best statistical parameter for the design of the wind-powered desalination system and the mode for the wave-based system. In the case study, the wind-powered system obtained better results despite a lower installed power than the wave-powered system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.