Abstract

In this study, a composite meta-absorber with a flexible size is proposed, and a genetic algorithm is used to optimize the geometric dimensions under normal incidence and free field conditions. With an overall thickness of 0.2 m, the quasi-perfect sound absorption is achieved in the 200 Hz - 20 kHz range. The sound pressure and sound intensity distributions inside the composite meta-absorber prove the incident sound wave is effectively localized inside the structure. Comparing the effective sound velocities in layers 1 and 10 with the sound velocity in air, it is possible to infer that the slow sound phenomenon is more pronounced at the bottom of THE composite meta-absorber, due to the different combinations of lateral plates and cavities. The coupling relationship between internal loss and radiation loss of the meta-absorber was revealed using the zero and pole method, proving the ultra-broadband and quasi-perfect sound absorption characteristics. Tests of the sound absorption coefficient in impedance tubes and reverberation chambers confirm the effective broadband sound absorption performance. The composite meta-absorber in this study can be directly used to reduce broadband noise. Moreover, it also provides ideas for the design of sound-absorbing metamaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.