Abstract

High-energy lasers for Inertial Confinement Fusion (ICF) experiments are typically designed with large apertures (>30 cm) to keep the fluence below the damage threshold of the various optical components. Until recently, no optical switch technology could be scaled to the aperture size, aperture shape (square), and switching speed required for the next generation of ICF drivers. This step is critical: The Beamlet multipass amplifier cavity uses a full-aperture optical switch to trap the laser pulse within the cavity and to divert the pulse out of the cavity when it reaches the required energy. By rotating the polarization of the beam, a Pockels cell in the switch controls whether the beam is transmitted through, or reflected from, the polarizer. In this article the authors describe an optical switch technology that does scale to the required aperture size and shape for Beamlet and the porposed National Ignition Facility (NIF) laser, and can employ a thin crystal. This switch consists of a thin-film polarizer and a plasma-electrode Pockels cell (PEPC), the latter originally invented at Lawrence Livermore National Laboratory (LLNL) in the 1980s and under further development since 1991. After discussing the PEPC concept, they present the design and optical performance of a 32 x 32 cm{sup 2} prototype PEPC, including discussions of the crystals, the PEPC assembly, the vacuum and gas system, and the high-voltage pulsers. Then they describe the performance of the 37 x 37 cm{sup 2} PEPC construced specifically for the Beamlet laser. Finally, they discuss important technology issues that arose during PEPC development: cathode sputtering, cathode heating, nonuniformities in the switching profile, switch-pulse leakage current, and an estimate of the plasma density and temperature produced during PEPC operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call