Abstract

The combustion difficulties for low heating value (LHV) gases derived from biomass fuels via a gasification process have led to more investigations into LHV gas combustors. Cyclone combustors provide good air/fuel mixing with long residence times. In this study, a small-scale pressurized cyclone combustor (PCC) was designed and optimized using computational fluid dynamics (CFD) simulation. The PCC, along with a turbocharger-based, two-stage microturbine engine, was first characterized experimentally with liquefied petroleum gas (LPG) fuel and then with both LPG and LHV gas derived from biomass in dual-fuel mode. The combustor achieved ultra-low CO and NO x emissions of about 5 and 7 ppm, respectively, for LPG fuel and of about 55 and 12 ppm, respectively, in dual-fuel mode at the maximum second-stage turbine speed of 26,000 rpm with stable turbine operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.