Abstract

In this paper we, report on the design, simulation and initial results of a microgenerator, which converts external vibrations into electrical energy. Power is generated by means of electromagnetic transduction with static magnets positioned either side of a moving coil located on a silicon structure designed to resonate laterally in the plane of the chip. The development and fabrication of a micromachined microgenerator that uses standard silicon based fabrication techniques and a low cost, batch process is presented. Finite element simulations have been carried out using ANSYS to determine an optimum geometry for the microgenerator. Electromagnetic FEA simulations using Ansoft's Maxwell 2D software have shown voltage levels of 4 to 9 V can be generated from the single beam generator designs. Initial results at atmospheric pressure yield 0.5 /spl mu/W at 9.81 ms/sup -2/ and 9.5 kHz and emphasise the importance of reducing unwanted loss mechanisms such as air damping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.