Abstract

Abstract The most common gear architecture used in external gear pumps is the spur gear with an involute tooth profile. The involute spur gear has many benefits, such as a constant line of action, tolerance to parallel misalignment, and ease of fabrication. However, the involute spur gear has two major drawbacks in pump applications: the tooth profile results in trapped pockets of fluid that contribute to pressure spikes and noise generation, and the straight axial profile further increases noise due to intermittent tooth shock during meshing. Current state-of-the-art pumps utilize helical gears to enable a gradual mesh to reduce noise and pressure pulsation, which results in an axial load induced on the gears during meshing. A novel gear design has been developed that eliminates axial gear loading while preserving a gradual mesh. A hybrid tooth profile eliminates the trapped fluid pocket while maintaining the benefits of an involute profile. Initial testing demonstrates an increase in volumetric efficiency by 10% and a reduction of sound level by 7 dB compared to a spur gear of the same size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call