Abstract

The current global resource shortage and environmental pollution are becoming increasingly serious, and the development of the new energy vehicle industry has become one of the important issues of the times. In this paper, a nickel–cobalt lithium manganate (NCM) battery for a pure electric vehicle is taken as the research object, a heat dissipation design simulation is carried out using COMSOL software, and a charging heat generation model of the battery pack is established. Combined with the related research on the thermal management technology of the lithium-ion battery, five liquid-cooled temperature control models are designed for thermal management, and their temperature control simulation and effect analysis are carried out. Finally, the performance evaluation system of the thermal management scheme of the lithium-ion battery pack is established based on the analytic network process (ANP) and system dynamics (SD), and the performance of the above five thermal management design models is comprehensively scored and analyzed. The results show that liquid-cooled Models 1 (86.7075) and 5 (89.1055) have the highest overall scores, meeting both the temperature control requirements and the overall thermal management performance, and it is recommended to apply the working condition settings for which they are evaluated as Level I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.