Abstract

Permeable friction courses (PFCs) are popular in Texas, where the current specification for PFC (Item 342) has a maximum aggregate size of 1/2 in. and is typically placed in layer thicknesses of 1.5 to 2 in. In this study fine-graded PFCs composed of a single aggregate fraction are proposed for placement at a nominal thickness of 1 in. Initial laboratory testing found that the target air void content for volumetric design would be around 26% air voids, substantially higher than the current PFC designs, which are between 18% and 22% air voids. To minimize the likelihood of failure, extensive laboratory testing was performed to arrive at the proposed design. Tests included Hamburg wheel-track testing, overlay tester cracking, and Cantabro, draindown, and water flow tests. The proposed fine PFC mix was first placed on a test track in Pecos, Texas. Two designs were placed and subjected to limited traffic loadings, field water flow, noise, and skid measurements. These test sections performed well. The next section was placed on a Texas Department of Transportation project in May 2011 and subjected to extremely intense traffic loading conditions on an exit ramp on US-59 in Lufkin. This ramp has a high frequency of wet-weather accidents. In addition to extreme traffic loads, the surface experienced extreme heat (air temperatures approaching 105°F) and heavy localized rain (a 6-in. rain event within a 24-h period). After 3 months the fine PFC is holding up well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.