Abstract
The brushless doubly fed generator (BDFG) shows the great potential for use in large variable speed wind turbines due to its high reliability and cost benefits of a partially rated power electronics converter. However, it suffers from the compromised efficiency and power factor in comparison with conventional doubly fed induction or synchronous generators. Therefore, optimizing the BDFG, especially the rotor, is necessary for enhancing its torque density and market competitiveness. In this paper, a novel cage-assisted magnetic barrier rotor, called the hybrid rotor, is proposed and analyzed. The detailed analytical design approaches based on the magnetic field modulation theory are investigated. In addition, the machine losses and mutual inductance values using the proposed rotor designs are calculated and their performance implications evaluated. Finally, the comparative experimental results for two BDFG prototypes are presented to verify the accuracy and effectiveness of the theoretical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.